**案例:月球车电池续航问题**
**问题**:月球车在电池寿命内需规划最大行驶距离。
**模型构建**:
-速率函数\( v(t)\)随时间变化,通过积分计算总行驶距离:
\[
S =\int_{0}^{T} v(t)\, dt
\]
-利用分段积分(如黎曼和)近似估算,并结合导数分析速率变化趋势。
**结果**:通过微积分优化路径规划,确保月球车在电池耗尽前返回。
---
####五、**物理学:微分方程与动态预测**
**案例:人口增长的Logistic模型**
**微分方程**:
\[
\frac{dP}{dt}= rP \left(1 -\frac{P}{K}\right)
\]
其中,\( P \)为人口数量,\( r \)为增长率,\( K \)为环境承载力。
**应用**:2000年中国人口普查数据验证显示,微分方程预测值与实际值误差小于5%,凸显其高效性。